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The High Performance Embedded Computing Software Initiative (HPEC-SI) Development 
Working Group has been creating VSIPL++, a new software standard to promote portability, 
productivity, and performance in embedded parallel systems.  This standard expands the Vector 
Signal Image Processing Library (VSIPL) to encompass parallel systems in C++.  HPEC-SI has 
contracted with CodeSourcery, LLC, to produce a VSIPL++ Reference Library.  The Reference 
Library is intended to allow early users to experiment with the functionality of VSIPL++. 

This presentation discusses a project to evaluate the VSIPL++ specification by using the 
CodeSourcery VSIPL++ Reference Library to implement a part of the current operational signal 
processing code for the Deployable Autonomous Distributed System (DADS).  The authors of 
this presentation have extensive experience in developing and using the original VSIPL library, 
working with parallel signal processing algorithms, and developing other HPC middleware and 
standards.  They have been involved with the development of the VSIPL++ standard, but are not 
C++ programming experts.  One aspect of this work will be to compare features and ease-of-use 
of VSIPL and VSIPL++. 

The Deployable Autonomous Distributed System (DADS) is an advanced development program, 
sponsored by ONR-321, to demonstrate deployable autonomous undersea technology for 
operations in coastal waters.  The system consists of small acoustic arrays on the ocean floor 
with embedded in-node signal processing.  Detections are transmitted to the surface using 
acoustic modems. 

The current DADS acoustic beamforming software is written in ANSI C, is available in both 
development and embedded configurations, and is unclassified.  The code is sequential, but 
future hardware and algorithm upgrades could require parallelization.  Of several candidate 
software modules, the beamformer was chosen as most appropriate for conversion to VSIPL++.  
The DADS beamformer does either adaptive processing (using a minimum variance 
distortionless response algorithm) or conventional beamforming.  The beamformer source code 
consists of about 1000 lines of non-blank, non-comment code. 

The project established a test data set and an environment in which the current DADS 
beamforming code could be executed.  The code was then rewritten in C++ using the 
CodeSourcery VSIPL++ Reference Library and the results of running the new code were 
verified.  Metrics were recorded on the time to develop the code and the resulting changes in 
lines of code from the original version. 

We will report on these metrics and other lessons learned.  Of particular interest will be whether 
addressing real-world algorithms exposes any functional problems or deficiencies of the 
VSIPL++ specification that should be addressed by the HPEC-SI Working Group. 
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VSIPL++ Demonstration
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• HPEC-SI is moving VSIPL functionality to object 
oriented programming and C++: VSIPL++

• Goal of this demonstration:
– Evaluate the draft VSIPL++ Serial Specification 
– Identify both advantages and problems with the VSIPL++ 

methodology
– Suggest improvements

• Method
– Port a DoD acoustic beamformer algorithm written in 

standard C to use VSIPL++ and C++
– Measure and Evaluate (when compared to baseline code)
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Deployable Autonomous Distributed 
System (DADS)

• DADS Goals
– Develop and demonstrate deployable autonomous 

undersea technology to improve the Navy’s 
capability to conduct effective Anti-Submarine 
Warfare and Intelligence-Surveillance-
Reconnaissance operations in shallow water

• Sponsor: ONR 321
http://www.onr.navy.mil/sci_tech/ocean/321_sensing/info_deploy.htm



DADS Concept
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• Sensors, Arrays & Sources
– Acoustic
– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion

• Master Node
– Network control
– Network data fusion
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– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion
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– Network control
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DADS Beamformer
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• Signal processing program chosen for 
conversion is DADS multi-mode beamformer
– Adaptive minimum variance distortionless 

response

• Current software is …
– Sequential ANSI C
– About 1400 lines of C source code
– Pointer-ized -- no vectorization



Approach
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• Establish test data and environment to execute and 
validate current code

• Analyze existing code and data structures
• Vectorize
• Rewrite module using VSIPL++
• Validate VSIPL++ version
• Report specification issues and code metrics

Used pre-release of CodeSourcery sequential 
VSIPL++ reference implementation which in 
turn uses the VSIPL reference implementation



Deliverables
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• Metrics
– SLOC
– Lines changed if appropriate
– Time to develop
– Others

• Report results and lessons learned
– HPEC-SI workshop
– DADS Annual Program Review for ONR, project 

personnel, industrial partner (Undersea Sensor 
Systems Inc.)



Initial Steps
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• Established testable code baseline
– Wrapped module in executable program
– Set up test data file and associated parameters
– Set up validation procedures

• Analyzed baseline code
– Figured out what algorithms were implemented
– Mapped program data flow



Data Flow Map
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Dual Implementations
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• Starting from scratch based on analysis of 
original program
– Insight, trial approaches to sub-problems

• Incremental modification of original program
– Vectorization

• Un-pointerize
• Reorder tests within loops
• Recast loops into vector and matrix operations

– VSIPL++ -ization
– This version chosen for final solution and 

metrics



Example of Typical Code
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frptr = fr; // pointer to replica buffer (real)

fiptr = fi; // pointer to replica buffer (imag)

for (ifreq = ibin1; ifreq <= ibin2; ifreq++)

// produce one row of the weight matrix at a time

for (iang = 0; iang < nang; iang++)  // loop over bearings

for (i = 0; i < nh; i++)  // copy a row of the replica

sr[i] = *frptr;

si[i] = *fiptr;

frptr++;

fiptr++;

for (i = 0; i < nh; i++)  // loop over hydrophones

wr[i] = wt[i] * sr[i];

wi[i] = wt[i] * si[i];

for (int ifreq = ibin1; ifreq <= ibin2; ifreq++)

w = vsip::vmmul<0>(wt, replica.get_xy(ifreq-ibin1));



Code Metrics
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• Number of files increased from 8 to 14
• SLOC for all source files

– Counting semicolons:
• Baseline 887
• VSIPL++ 630 -29%

– Counting non-blank, non-comment lines:
• Baseline 1389
• VSIPL++ 1018 -27%

• Heart of the beamformer calculation (all lines):
• Baseline 410
• VSIPL++ 180 -56%

• Lines of code changed: Most!



Memory Size Metrics
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• Binary program sizes (statically linked):
HP-UX/PA-RISC      Red Hat/Pentium__

– Baseline 560 KB 700 KB
– VSIPL++ 1,800 KB 3,900 KB

• Memory footprint and usage:
– Weren’t able to measure this
– VSIPL++ programs might be expected to use 

larger structures
• For example, N vectors become a matrix

– For this program’s statically allocated structures 
and arrays, it should be a wash



Test Cases
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• 14 input sensors, 
108 output beams

• 14x14 covariance matrix
• Forward FFTs 14 x 2048
• Inverse FFTs 108 x 2048
• Larger data set

• More smaller objects 
created, object creation 
amortized over less 
computing

• 64 input sensors, 64 
output beams

• 64x64 covariance matrix
• Forward FFTs 64 x 1024 
• Inverse FFTs 64 x 1024
• Smaller data set

• Fewer larger objects 
created, more 
computing per object



Execution Time Examples
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Profiling Results for PA-RISC
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Profiling Results for PowerPC
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Profiling Results for Pentium
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Object Creation
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• Previous experience with VSIPL has shown
– Object creation in inner loops is inefficient
– Solution is early binding / late destroys

• VSIPL++ reference implementation uses 
VSIPL library as its compute engine
– Observed similar inner-loop inefficiencies
– C++ new() called to create subviews of data

• A purely C++ VSIPL++ implementation 
would avoid some of these problems



Overall Issues
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• Additional data copying a potential problem
– Improvements in reference library will remove 

some of this

• Memory allocation
– A clever implementation might avoid much of this
– Proposal to improve specification so 

implementation can avoid calls to C++ new() in 
inner loops

• Binary program size for embedded systems



VSIPL++ Specification

HPEC 2004 — DADS and VSIPL++ 21

• Issues with specification
– I/O for data Fixed in final spec
– Row/Column major Fixed in final spec

• matrix layout in memory
– Real and Imaginary subviews   Fixed in final spec
– Sticky subview variables with remapping

Proposed fix for final spec

• There were still limitations in the VSIPL++ reference 
implementation we used
– Tensors
– Transpose views and operations



Ongoing VSIPL++ Questions
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• Knowing when data is copied and when it 
isn’t and what we can do about it: there are 
subtle C++ distinctions

• Continuing general concern about efficiency
• Use of bleeding-edge C++ features and 

compiler compatibility



Our Contributions
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• Demonstrated that VSIPL++ can be used for 
real DoD application code

• Close look at details improved specification
– Fixing inconsistencies and small errors
– Improving understandability of the spec

• Redesign of the FFT and multiple-FFT API

• Bug fixes in reference implementation
• Improvements to underlying VSIPL reference 

library



Conclusions
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• VSIPL++ serial specification has the 
functionality to implement a typical DoD 
signal processing application

• Resulting code is more understandable and 
maintainable

• VSIPL++ can deliver comparable performance
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